a2 United States Patent

Hill et al.

US009479519B1

US 9,479,519 B1
Oct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(1)

(52)

(58)

WEB CONTENT FINGERPRINT ANALYSIS
TO DETECT WEB PAGE ISSUES

Applicant: Amazon Technologies, Inc., Seattle,
WA (US)
Inventors: Peter Frank Hill, Seattle, WA (US);
John W. Gray, III, Redmond, WA
(US); Kurt Kufeld, Seattle, WA (US);
Dennis Pilarinos, Vancouver (CA);
Arun Sundaram, Seattle, WA (US);
Peter Sven Vosshall, Bainbridge Island,
WA (US); David John Ward, Jr.,
Seattle, WA (US)
Assignee: Amazon Technologies, Inc., Seattle,
WA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/575,792

Filed: Dec. 18, 2014

Int. CI.

GO6F 11/00 (2006.01)

GO8B 23/00 (2006.01)

H04L 29/06 (2006.01)

HO4L 1226 (2006.01)

GO6F 11/30 (2006.01)

GO6F 12/14 (2006.01)

U.S. CL

CPC ...cooou. HO04L 63/14 (2013.01); HO4L 43/04

(2013.01)
Field of Classification Search
CPC HO4L 63/1416; HO4L 63/1408; HO04L
63/1441; HOAL 63/1458; GOGF 21/552
713/153-154, 187-188, 193-194;
726/1, 13, 22-33; 709/206, 249, 389
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0289047 Al* 11/2008 Benea GO6F 21/64
726/27
2014/0059163 Al* 2/2014 Herbrich GO6F 17/30348
709/217
2015/0332147 Al* 11/2015 Anastas ... GO6N 5/04
706/12

OTHER PUBLICATIONS

HTTP Archive, “About the HTTP Archive,” <http://httparchive.org/
about.php>, 7 pages (accessed Dec. 15, 2014).

* cited by examiner

Primary Examiner — Evans Desrosiers

(74) Attorney, Agent, or Firm — Klarquist Sparkman,
LLP

57 ABSTRACT

Techniques and solutions are described for detecting poten-
tial problems with web pages. For example, a web page can
be analyzed (e.g., during loading of the web page) to
determine statistics, such as size and structure statistics. The
web page can be compared, using the statistics, to a statis-
tical model representing the web page to determine if the
web page is consistent with the statistical model. The
statistical model can be created from previous page loads of
the web page. Problems such as web page spoofing can be
detected if the same web page content (e.g., content with a
high degree of statistical similarity) is obtained from two
different web sites. For example, a web page that is retrieved
from one web site that matches a statistical model repre-
senting the same web page from another web site can
indicate a spoofed web page.

20 Claims, 8 Drawing Sheets

100

WEB SERVERS AND
CONTENT SERVERS

1o

NETWORK

Request web page and
receive web page
resources. 1,

i

Load web page.
124

!

Obtaln statistical mods!
from previous web page
loads.

GLIENT DEVICE

Gonerate sitistos for
web page.

!

Compare generated
statistics with statistical
modsl o determine if a
page load problem has

oceurred.
128

STATISTICAL
MODEL

STORAGE

140

U.S. Patent

FIG. 1

Oct. 25, 2016

Sheet 1 of 8

WEB SERVERS AND
CONTENT SERVERS

110

US 9,479,519 B1

100

Request web page and
receive web page
resources.

\¥]

Load web page.

~

:

Obtain statistical model
from previous web page
loads. 128

CLIENT DEVICE

AT

Generate statistics for
web page.
128

MN—

STATISTICAL
MODEL

y

STORAGE

Compare generated
statistics with statistical
model to determine if a
page load problem has

occurred.

— 129

N——

140

—
N
o

U.S. Patent Oct. 25, 2016 Sheet 2 of 8 US 9,479,519 B1

FIG 2 200
'

HEADLESS BROWSER

Receive request for web
page and obtain web page

resources. 012 e

WEB SERVERS AND — ~—————
CONTENT SERVERS ¢

STATISTICAL
Obtain statistical model for MODEL
214
y Yy ¢ 214 220
N—

Generate statistics for
requested web page.

—

Compare web page with
statistical model.
A 4 216

no
e
o

NETWORK

130

CLIENT DEVICE

WEB BROWSER
235

U.S. Patent

FIG. 3

Oct. 25, 2016

FIRST WEB SITE

Co
g
o

Sheet 3 of 8

SECOND WEB SITE

o
o

US 9,479,519 B1

300

CLIENT DEVICE

WEB BROWSER

235

HEADLESS BROWSER

Receive request for web
page and obtain web
page resources from

second web sne.a

v

Identify statistical model
matching web page
created from previously
loaded instances of web
page from first web site.

322

v

Output indication that
web page from second
web site matches

statistical model. 324

STATISTICAL

STORAGE

MODEL

220

el
e
o

U.S. Patent Oct. 25, 2016 Sheet 4 of 8 US 9,479,519 B1

FIG. 4 s

Request web page.

!

Receive web page resources for
requested web page.

!

Load web page.

!

Obtain statistical model representing a
known good state of the web page.

440

Generate statistics for the loaded web
page.

!

Compare the generated statistics with
the statistical model.

!

Determine whether a page load
problem has occurred based on the
comparison. 470

N
[—
o

~
N
o

~
=)

~

0

~

0

U.S. Patent Oct. 25, 2016 Sheet 5 of 8 US 9,479,519 B1

FIG. 5 /500

Receive request for a web page.

510
Obtain web page resources for the
requested web page.

!

Obtain statistical model representing
the web page.

!

Compare the web page with the
statistical model to determine whether
the web page is consistent with the
statistical model.

240

o1
[en]

2

30

Sheet 6 of 8 US 9,479,519 B1

U.S. Patent Oct. 25, 2016

600

FIG. 6

Request web page from second web
site.
61

!

ldentify a statistical model representing
the web page from a first web site.

¢ 620

Output an indication that the web page
from the second web site matches the
statistical model of the web page from

the fist web site. 630

o

US 9,479,519 B1

Sheet 7 of 8

Oct. 25, 2016

_ 097
0LL
NOILVLINIS3IHd3Id | _ | _ _ 08z
=7 dVIALIG .“ AV1dSId
4 _
7 Y
SHIAVYT d3SS3D0Hd *
g7 13AITHIMOT L _ |yl 57
A
e I1NAOCKW
_ ONIONIS
IN3INOD
SHIAVYT d3ISSID0Hd L — |—p DNISS3IO0Hd
57 13A3T H3IHDIH AINILINOD LNIITD
*# V7
* _ F §
— — —_—
|||||| 1 99/
=57 Wod | JUSIUOD
ovZ | anlgoay
' ONIAOD3A LNILNOD
FTINAON ONISSTIOOHd LNILINOD | -
A A _ cll
—_—_—
[
0c/ 97
ITNAONW 1senbai JUsILOD
IVYAIIHLIH INJLINOD |4
02 >
ITNAON 0/
DNISSIDOHd < H3IsSMmo4dd
NOILOVHILNI c97
uonoesu| 301A3A INJITD
JO uoledIpu|
WILSAS AHVIAIWHILNI /

U.S. Patent

002 / Ol

US 9,479,519 B1

Sheet 8 of 8

Oct. 25, 2016

U.S. Patent

S3IOOTONHOFL d38140S3Ad ONILNINWTTdINI 088 FHVMLIOS

_ o8 -4 l N S _

|| 3ovHOlSt-----o- ; |} il ; |

_ p_— _ Gzs8 028 _
AHOW3AN) \ AHOW3W

'l (9)301A3a tnaino | TN / a

_ S5 Y (orguan) |
Buissaoo.ud)

“ 058 (S)301A3d 1nani | | " 05 Buisssooud | |

| " \ 10 soydeib) [EA1US0 PA

A“v 0/8 (SINOILOINNOD | — — — — — _ _ 088 |
_ NOILVOINAININOD | 0og 1 NIIWNOHIANT ONILNdINOD

8 Ol

US 9,479,519 Bl

1

WEB CONTENT FINGERPRINT ANALYSIS
TO DETECT WEB PAGE ISSUES

BACKGROUND

Generally described, computing devices and communica-
tion networks can be utilized to exchange information. In a
common application, a computing device can request con-
tent from another computing device via the communication
network. For example, a user at a personal computing device
can utilize a software browser application, typically referred
to as a browser software application, to request a Web page
from a server computing device via the Internet. In such
embodiments, the user computing device can be referred to
as a client computing device and the server computing
device can be referred to as a content provider.

With reference to an illustrative example, a requested Web
page, or original content, may be associated with a number
of additional resources, such as images or videos, that are to
be displayed with the Web page. In one specific embodi-
ment, the additional resources of the Web page are identified
by a number of embedded resource identifiers, such as
uniform resource locators (“URLs”). In turn, software on the
client computing devices, such as a browser software appli-
cation, typically processes embedded resource identifiers to
generate requests for the content. Accordingly, in order to
satisfy a content request, one or more content providers will
generally provide client computing devices data associated
with the Web page as well as the data associated with the
embedded resources.

We pages are displayed by the client computing device
according to the web content and associated resources
received for the web page. In some situations, web pages
may not display as intended, which can be the result of a web
server or network malfunction, a problem with web browser
rendering, or another issue related to the retrieval or pro-
cessing of the web pages. In some situations, an error may
be generated or a user may notice the problem. However, in
other situations, the problem may go unnoticed.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same become better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings.

FIG. 1 is a block diagram depicting an example environ-
ment for detecting potential web page problems during web
page loading.

FIG. 2 is a block diagram depicting an example environ-
ment for detecting potential web page problems during web
page loading in a headless browser environment.

FIG. 3 is a block diagram depicting an example environ-
ment for detecting potential web page problems, including
web page spoofing, during web page loading.

FIGS. 4, 5, and 6 are flow charts of example methods for
detecting potential problems during web page loading.

FIG. 7 is a block diagram depicting an example environ-
ment for web browsing using an intermediary system.

FIG. 8 depicts a generalized example of a suitable com-
puting environment in which the described innovations may
be implemented.

DETAILED DESCRIPTION

The following description is directed to techniques and
solutions for analyzing web page fingerprints (e.g., analyz-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing web page content during loading, which can include web
page retrieval, rendering, and/or display) in order to detect
potential problems or issues with the web pages. For
example, in some situations a web page may be retrieved
from a web server without any indication of an error (e.g.,
the Hypertext Transfer Protocol (HTTP) status code can be
a successful 200-series code). However, even in such situ-
ations where the web server does not report an error, the web
page may still have problems. For example, the content of
the web page may be incomplete (e.g., when performing a
Google™ search using www.google.com, the results page
may contain just the web page header content with a blank
or empty search results area). As another example, the web
page may not render properly at the client web browser. For
example, some portions of the web page content may not be
displayed or may display incorrectly (e.g., with a corrupted
or incomplete layout, with missing formatting, with content
areas that are not visible, etc.).

Potential problems with web pages can be detected by
analyzing the content of the web pages. For example,
various aspects of the web page can be analyzed to generate
statistics representing the web page content. The statistics
representing a web page can be called a “fingerprint” of the
web page (e.g., the statistics can uniquely identify the web
page). Various machine learning techniques and statistical
techniques can be applied to generate the statistics and/or
compare the generated statistics to a current sample of the
web page to determine whether a match is present.

In some implementations, web page statistics are gener-
ated from the size of various components of the web page.
For example, statistics can be created from the number of
bytes of HyperText Markup Language (HTML) of a web
page, the number of bytes of JavaScript of a web page, the
number of bytes of the images of the web page, the number
of bytes of the CSS information for the web page, and/or the
number of bytes of other components or resources of the
web page (e.g., bytes of various structure components such
as specific division elements). The number of bytes can be
considered independently or aggregated (e.g., the bytes of
HTML and JavaScript can be combined and considered as a
whole). By generating statistics for the size of various
components of a web page, a distinctive “fingerprint” (e.g.,
a fingerprint that is likely to be unique) of the web page can
be created.

In some implementations, web page statistics are gener-
ated from various structural aspects of the web page. For
example, statistics can be created from structural aspects
obtained from HTML of the web page, from Document
Object Model (DOM) elements of the web page, and/or from
other aspects of the web page (e.g., from processed layers).
For example, the division (div) elements of the web page
(e.g., specific div elements that are considered significant,
such as those representing content areas which could include
header content areas, body content areas, navigation content
areas, etc.) can be used to create a distinctive “fingerprint”
of the web page (e.g., a fingerprint that is likely to uniquely
identify the web page). In some implementations, statistics
can be generated from a combination of size and structural
aspects of a web page.

In order to identify potential problems with web pages,
web page statistics that are generated from a currently
retrieved or loaded web page can be compared with a
statistical model representing the web page (e.g., represent-
ing a known good state of the web page). Whether a
particular instance of a web page represents a known good
state of the web page can be determined automatically (e.g.,
by automatically determining that that expected content

US 9,479,519 Bl

3

and/or structure of the web page is present and has loaded as
expected) and/or with user review (e.g., by having a user
review the content and/or structure of the web page to
determine whether the web page is correct). In some imple-
mentations, a statistical model is created from a number of
previous page loads for the web page (e.g., a number of
successful previous page loads that represent a known good
state of the web page). The statistical model can include size
statistics (e.g., number of bytes of HTML, number of bytes
of JavaScript, etc.) and/or structure statistics (e.g., HTML
element structure, div element structure, etc.). The statistical
model can represent an average or typical version of the web
page. For example, the size statistics from a number of
previous web page loads can be averaged and a standard
deviation can be calculated. A current page load can then be
compared to the statistical model based on the average and
the standard deviation.

In some implementations, a potentially spoofed web page
can be detected by comparing a web page with statistical
models. If the web page matches a statistical model that is
associated with a different source for the web page, then a
potentially spoofed web page can be identified. For example,
a situation where the same web page (e.g., having the same,
or almost the same, web content based on a comparison of
the content of the web page with the statistical model) is
obtained from two different web sources (e.g., different
domain names and/or different IP addresses) can indicate
that the web page is being spoofed.

FIG. 1 is a block diagram of an example environment 100
for detecting potential web page problems during web page
loading. For example, potential problems can be detected
when a web page is retrieved (e.g., from the HTML,
JavaScript, images, and/or other received resources related
to the web page) and/or when a web page is rendered (e.g.,
based on DOM information, processed layers, etc.).

The example environment 100 includes web servers and
content servers 110 that provide web pages and associated
resources to devices performing web browsing operations
(e.g., to client device 120). For example, the web servers and
content servers 110 can provide web resources such as
HTML, JavaScript, images, video content, and/or other web
content in response to a web page request from a client
device (e.g., a client device running a web browser appli-
cation).

The example environment 100 includes client device 120.
For example, the client device 120 (e.g., a laptop, desktop,
notebook, phone, tablet, or other type of computing device)
can run a web browser application (not depicted) for loading
web pages obtained, via the network 130 (e.g., the Internet),
from the web servers and content servers 110.

The client device 120 can detect potential web page
problems during web page loading. For example, the client
device 120 can request a web page from the web servers and
content servers 110, receive HTML and related web
resources, generate statistics (e.g., size statistics and/or
structure statistics) and compare the statistics to a statistical
model of the web page to identify potential problems (e.g.,
by determining whether the statistics for the retrieved web
page are consistent with the statistical model).

In some implementations, the client device 120 requests
aweb page from the web servers and content servers 110 and
receives web page resources for the web page, as depicted
at 122. For example, a user of the client device 120 can enter
a URL for the web page into a web browser application
running at the client device 120 to initiate the web page
request. In response, the client device 120 can receive web
page resources for the requested web page, which can

10

15

20

25

30

35

40

45

50

55

60

65

4

comprise HTML, JavaScript, Cascading Style Sheet (CSS)
information, images, and/or other web content.

Once the client device 120 has received the web page
resources for the requested web page (as depicted at 122),
the client device 120 loads the web page, as depicted at 124.
For example, the client device can load the HTML and
associated resources into a web browser application. The
client device 120 can also perform various processing opera-
tions using the HTMIL and associated resources. For
example, the client device 120 can create a DOM, create
processed layers (e.g., composited layers), etc.

The client device 120 can obtain a statistical model that
represents previous page loads of the web page (e.g., iden-
tified using a URL for the requested web page) from
statistical model storage 140, as depicted at 126. The sta-
tistical model can represent a known good state of the web
page. Instead of obtaining the statistical model from statis-
tical model storage 140, the client device 120 can obtain the
statistical model from an external source (e.g., from the web
servers and content servers 110 or from another source). The
statistical model can be obtained (as depicted at 126) at
various points in time, such as when the web page is
requested (e.g., before, during, or after the web page request
operation depicted at 122), when the web is loaded (e.g.,
before, during, or after the web page load operation depicted
at 124), or when the statistics are generated (e.g., before,
during, or after the generate statistics operation depicted at
128).

The client device 120 generates statistics for the currently
received web page, as depicted at 128. For example, the
client device 120 can generate size statistics and/or structure
statistics from the web page resources before they have been
processed (e.g., by determining size information for HTML,
JavaScript, images, etc.) and/or after they have been pro-
cessed (e.g., by determining structure information from the
DOM, such as the div structure of the web page).

The client device 120 compares the generated statistics
for the currently received web page with the statistical
model representing the web page in order to identify poten-
tial problems with the currently received web page, as
depicted at 129. For example, the client device 120 can
compare size statistics for the currently received web page
(e.g., mumber of bytes of HTML, number of bytes of
JavaScript, number of bytes contained within a particular
element such as a body div element, etc.) against corre-
sponding size statistics in the statistical model (e.g., average
number of bytes of HTML from a number of previous
successful page loads for the web page, average number of
bytes of JavaScript from a number of previous successful
page loads for the web page, average number of bytes
contained within a particular element such as a body div
element, etc.). A potential problem with the received web
page can be identified if the statistics for the currently
received web page are significantly different from the sta-
tistical model. For example, a potential problem can be
identified if one or more of the size statistics are more than
one standard deviation different from the statistical model.
Other statistical comparison operations can be used to
compare current web page statistics with a statistical model
instead of, or in addition to, standard deviation. Other types
of statistical models and parameters that can be applied in
performing the comparison include a t-test statistical model,
a rank-sum test (e.g., the Mann-Whitney U test), and a
confidence interval parameter. In addition, standard statisti-
cal operations such as mean, median, average, and percent-
age can be used. The statistical model that is used for the
comparison can depend on a number of factors, including

US 9,479,519 Bl

5

the sample size used to create the statistical model (e.g., the
number of web page loads of a particular web page that was
used to create the statistical model for the web page) and
whether the statistics (e.g., size and/or structure statistics)
are normally distributed.

If the generated statistics do not match the statistical
model, the client device 120 can output an indication of a
potential problem with the currently received web page. For
example, the client device 120 can save an indication of the
potential problem to a log file, send a notification to a
provider of the web page or web site, send a notification to
a provider of web browser software, send the indication to
a remote system (e.g., for remote logging), or notify the user
of the client device 120.

As an example, consider a statistical model for a particu-
lar web page that includes size statistics of:

HTML, average size=190 KB, standard deviation=28 KB

JavaScript, average size=75 KB, standard deviation=8

KB

If a currently loaded instance of the web page includes size
statistics of 182 KB of HTML and 73 KB of JavaScript, then
size statistics of the currently loaded instance of the web
page would be within one standard deviation of the statis-
tical model. If one standard deviation is used as the range of
a problem-free page load, then the currently loaded instance
of'the web page would not be identified as having a potential
problem. However, if the currently loaded instance has an
HTML size of 50 KB (well outside the one standard devia-
tion range of 162 KB to 218 KB) then the currently loaded
instance of the web page can be identified has having a
potential problem (e.g., part of the web content of the
currently loaded instance of the web page may be missing or
may not have rendered properly).

In some implementations, the statistics are combined for
comparison. For example, the HTML size and the JavaScript
size in the example above can be combined to create a
combined average size of 265 KB with a standard deviation
of 36 KB. The combined sizes can then be compared to
combined size statistics of a currently loaded instance of the
web page.

As another example, consider a statistical model for a
particular web page that includes div structure information
for div elements with identifier “id” attributes (e.g., a div
element such as “<div id="topnav’. . . >” which can indicate
a particular web page content area). Specifically, consider
the following example statistics:

Div id elements, average number=74
The number of div id elements (e.g., the number of unique
div elements) of a currently loaded instance of the particular
web page can then be compared to the statistical model.
Various criteria can be used to determine whether the
number of div elements matches, or is consistent with, the
statistical model. For example, a standard deviation com-
parison can be used (e.g., one standard deviation, two
standard deviations, etc.). As another example, a percentage
threshold can be used (e.g., if the number of div id elements
is more than 15% different from the average number from
the statistical model, then a potential problem can be iden-
tified). Using a 15% variation threshold, if the number of div
id elements of the currently loaded instance of the particular
page is less than 63, or more than 85, then a potential
problem can be identified. Specific div elements can also be
compared (e.g., in addition to, or instead of, the number of
div elements). For example, a comparison can be made
between div elements with specific attributes (e.g., using

10

15

20

25

30

35

40

45

50

55

60

6

“id” attributes which can indicate specific div types, such as
header div elements, body div elements, navigation div
elements, etc.).

As another example, consider a statistical model for a
particular web page that includes DOM tree structure infor-
mation. Specifically, consider a statistical model that
includes DOM tree elements collected from a number of
previous page loads of the particular web page, which can
include specific DOM elements, a count of various types of
DOM elements, attributes of DOM elements, ordering of
DOM elements in the tree structure, etc. A currently loaded
instance of the particular web page can be compared to the
statistical model by comparing the DOM structure of the
currently loaded instance with the DOM information stored
in the statistical model. For example, matches can be iden-
tified between specific DOM elements of the currently
loaded instance of the web page and the statistical model, the
number of DOM elements can be compared, etc. A problem
can be detected if the DOM structure does not match (e.g.,
varies from the statistical model by more than a specific
amount). For example, if a threshold number of the DOM
elements match the statistical model (e.g., if 90% of the
DOM elements of the currently loaded instance of the web
page are present in the statistical model), then the currently
loaded instance of the web page can be identified as match-
ing the statistical model (e.g., being consistent with the
statistical model), and otherwise a potential problem can be
identified (e.g., if less than 90% of the DOM elements
match).

In addition to considering DOM tree information and div
information, other structural information can be used to
build a statistical model of a web page. For example, HTML
tags can be considered (e.g., which tags are present, the
number of tags, etc.). As another example, viewport infor-
mation can be considered (e.g., the dimensions of the
viewport).

In some implementations, a statistical model for a web
page stores statistical information for each of a number of
different variations of the web page. For example, a particu-
lar web page may contain different content (e.g., different
web elements, a different structure, etc.) depending on a
number of factors. For example, the particular web page
may contain different content depending on whether the user
is authenticated (e.g., logged in to the web site). The
particular web page may contain different content depending
on user classification criteria (e.g., users can be classified
into groups based on criteria such as geographical location,
device capabilities, etc., and the web page may appear
different to the different groups of users). The particular web
page may also vary over time. The statistical model for a
web page can store information for each of a number of
different versions of the web page, and a comparison to a
currently retrieved instance of the web page can be made
with each of the number of different versions stored in the
statistical model. A comparison of a currently retrieved
instance of the web page can result in a match with one or
more versions of the web page stored in the statistical model.

FIG. 2 is a block diagram of an example environment 200
for detecting potential web page problems during web page
loading in a headless browser environment. For example,
potential problems can be detected when a web page is
retrieved (e.g., from the retrieved HTML, JavaScript,
images, and/or other retrieved resources related to the web
page) and/or when a web page is rendered (e.g., based on
DOM information, processed layers, etc.).

The example environment 200 includes a headless
browser environment 210. The headless browser environ-

US 9,479,519 Bl

7

ment 210 can comprise various types of computing devices
(e.g., server computers, databases, networking devices, etc.)
that provide the headless browser environment (e.g., as a
centralized service or as a distributed, or cloud-based, ser-
vice). The headless browser environment 210 supports web
browsing activity of client devices, such as client device 230
connected via network 130. For example, the headless
browser environment 210 can receive a request for a web
page from the client device 230 (e.g., via a web browser
application 235 running on the client device 230). In
response, the headless browser environment 210 can retrieve
web page resources (e.g., HTML, JavaScript, CSS informa-
tion, images, and/or other web page resources) from web
servers and content servers 110. The headless browser
environment 210 can provide the web page resources to the
client device 230 in their original state (e.g., original HTML
and related resources) and/or in a processed state. For
example, the headless browser environment 210 can process
the web page resources (e.g., create a DOM, create pro-
cessed layers, or create bitmap images) and send the pro-
cessed resources to the client device 230. The client device
230 can received the web page resources, perform local
processing if needed, and display the web page within the
web browser application 235.

The headless browser environment 210 can detect poten-
tial web page problems during web page loading. For
example, the headless browser environment 210 can receive
a request for a web page from a client device, obtain web
page resources for the web page (e.g., from the web servers
and content servers 110), receive HTML and related web
resources, generate statistics (e.g., size statistics and/or
structure statistics) and compare the statistics to a statistical
model of the web page to identify potential problems (e.g.,
by determining whether the statistics for the retrieved web
page are consistent with the statistical model).

In some implementations, the headless browser environ-
ment 210 receives a request for a web page from the client
device 230 and obtains web page resources (e.g., HITML and
related resources) for the web page from the web servers and
content providers 110 and/or from local storage (e.g., local
cache), as depicted at 212. The headless browser environ-
ment 210 obtains a statistical model that represents previous
page loads of the web page from statistical model storage
220, as depicted at 214. The statistical model can represent
a known good state of the web page. In some solutions, the
headless browser environment 210 generates statistics as
depicted at 215 (e.g., size statistics and/or structure statis-
tics) from the obtained web page resources (e.g., from the
requested web page after it has been loaded). In other
solutions, the headless browser environment 210 does not
generate statistics (e.g., comparison can be performed by
directly matching HTML or related resources without gen-
erating statistics).

The headless browser environment 210 compares the
currently received web page (based on the web page
resources received at 212) with the statistical model repre-
senting the web page in order to determine whether the
currently received web page is consistent with the statistical
model (e.g., to identify potential problems with the currently
received web page). For example, the headless browser
environment 210 can compare size information (e.g., size
statistics for various components of the web page) for the
currently received web page (e.g., number of bytes of
HTML, number of bytes of JavaScript, etc.) against corre-
sponding size information in the statistical model (e.g.,
average number of bytes of HTML from a number of
previous successful page loads for the web page, average

10

15

20

25

30

35

40

45

55

8

number of bytes of JavaScript from a number of previous
successful page loads for the web page, etc.). A potential
problem with the received web page can be identified if the
currently received web page is significantly different (e.g., in
terms of size of components, structure of the web page, web
page elements, etc.) from the statistical model. For example,
a potential problem can be identified if one or more size
statistics are more than one standard deviation different from
the statistical model. Other statistical comparison operations
can be used to compare current web page statistics with a
statistical model instead of, or in addition to, standard
deviation.

If the received web page does not match the statistical
model (e.g., if size statistics and/or structure of the received
web page deviate significantly from the statistical model,
where the amount of deviation permitted can be a pre-
determined or user-configured range such as a percent or a
standard deviation value), the headless browser environment
210 can output an indication of a potential problem with the
currently received web page. For example, the headless
browser environment 210 can save an indication of the
potential problem to a log file, send a notification to a
provider of the web page or web site, send a notification to
a provider of web browser software, or notify the user of the
client device 230.

In some implementations, the headless browser environ-
ment 210 generates statistics for the currently received web
page and compares the generated statistics to the statistical
model. For example, the headless browser environment 210
can generate size statistics and/or structure statistics from
the web page resources before they have been processed
(e.g., by determining size information for HTML,
JavaScript, images, etc.) and/or after they have been pro-
cessed (e.g., by determining structure information from the
DOM, such as the div structure of the web page).

In some implementations, the client device 230 performs
some of the processing operations described above with
regard to the headless browser environment 210. For
example, the headless browser environment 210 can provide
web page resources and a statistical model for the web page
to the client device 230. The client device 230 can then
perform the comparison to detect potential problems with
the web page (e.g., perform the operation depicted at 216).
In some implementations, the client device 230 can obtain
some or all of the web page resources for the web page
directly from the web servers and content servers 110 and
perform the comparison at the client device 230 using a
statistical model obtained from the headless browser envi-
ronment 210.

FIG. 3 is a block diagram of an example environment 300
for detecting potential web page problems during web page
loading, including potential web page spoofing. For
example, a statistical model of a web page can be created by
a client device 230 and/or by a headless browser environ-
ment 210 from a number of previous page loads of the web
page from a first web site 310 (e.g., where the first web site
310 is identified by a specific domain name and/or a specific
IP address). In some implementations, the first web site 310
is a known legitimate source of the web page. A web page
that is received (by the client device 230 and/or by the
headless browser environment 210) from a second web site
315 (e.g., where the second web site 315 is identified by a
specific domain name and/or a specific IP address different
from the first web site 310) can be compared with statistical
models of various web pages, including the statistical model
created from the web page from the first web site 310. A
match between the web page received from the second web

US 9,479,519 Bl

9

site 315 and the statistical model created from the web page
from the first web site 310 indicates that the web pages are
the same (or likely to be the same) between the first web site
310 and the second web site 315. Such a match can indicate
that the web page provided by the second web site 315 is a
spoofed web page (e.g., if the second web site 315 is not a
legitimate source of the web page). Various criteria can be
used to determine whether the second web site 315 is
spoofing the web page. For example, the domain name of the
second web site 315 can be analyzed (e.g., a list of known
legitimate domain names can be maintained for the web
page, and a new domain name that is not in the list can
indicate a spoofed web page). As another example, the IP
address of the second web site 315 can be analyzed (e.g., a
list of known legitimate IP addresses can be maintained for
the first web site 310, and an IP address that is not in the list
or that is associated with an unexpected network or geo-
graphical location can indicate a spoofed web page).

In some implementations, the headless browser environ-
ment 210 receives a request for a web page from the client
device 230 and obtains web page resources for the requested
web page from the second web site 315, as depicted at 320.
The headless browser environment 210 identifies a statistical
model that matches the web page retrieved from the second
web site 315, where the statistical model is created from
previously loaded instances of the web page from the first
web site 310. For example, the headless browser environ-
ment 210 can compare the web page received from the
second web site 315 with a number of statistical models
stored in the statistical model storage 220 to identify the
statistical model that matches (e.g., by comparing size
statistics and/or structure statistics). The headless browser
environment 210 outputs an indication that the web page
received from the second web site 315 matches the statistical
model created from the web page of the first web site 310.
The indication can include saving a notification in a log file
at the headless browser environment 210, alerting a user of
the client device 230, etc.

FIG. 4 is a flow chart of an example method 400 for
detecting potential problems during web page loading. At
410, a web page is requested. For example, the web page can
be requested by a user of a computing device (e.g., by
entering a URL for the web page or by selecting a link to the
web page).

At 420, web page resources for the requested web page
are received. The web page resources can comprise HTML
and related resources (e.g., image files, CSS information,
JavaScript files, video content, and/or other resources ref-
erenced by the web page). The web page resources can be
received directly from web servers or content servers and/or
from an intermediary system (e.g., a headless browser
environment).

At 430, the web page is loaded. For example, a web
browser application can receive and load the web page using
the web page resources. Loading the web page can comprise
loading HTML and related resources (e.g., JavaScript,
images, etc.) into the web browser application, creating a
DOM for the web page, creating processed layers (e.g.,
render layers or composited layers), creating bitmap images,
or performing other processing operations.

At 440, a statistical model representing a known good
state of the web page is obtained. The statistical model can
be created from a number of previous page loads for the web
page (e.g., previous page loads that are determined to be
correct). The statistical model can represent an average or
typical version of the web page. For example, a web page
may typically have only a small variation in component size

10

15

20

25

30

35

40

45

50

55

60

65

10

and structure, which can be reflected in its statistical model
having a small variation in average size and layout statistics
(e.g., the standard deviation may be relatively low). On the
other hand, a web page may typically (e.g., as determined
from a number of previous page loads) have a large variation
in component size and structure, which can be reflected in its
statistical model having a large variation in average size and
layout statistics (e.g., the standard deviation may be rela-
tively high).

At 450, statistics for the loaded web page are generated.
For example, size statistics (e.g., HTML size, JavaScript
size, CSS size, image size, etc.) and/or structure statistics
can be generated.

At 460, the generated statistics for the loaded web page
are compared with the statistical model. For example, size
and/or structure statistics that are generated from the loaded
web page can be compared to corresponding size and/or
structure statistics from the statistical model (e.g., represent-
ing average or aggregate statistics from previous page
loads).

At 470, a determination is made as to whether a page load
problem has occurred based on results of the comparison
performed at 460. If a page load problem has occurred, then
an indication of the problem can be output (e.g., saved to a
local or remote log file, sent to an administrator, provided to
a user as an alert, etc.).

FIG. 5 is a flow chart of an example method 500 for
detecting potential problems during web page loading. At
510, a request for a web page is received. For example, the
web page request can be received by a web browser appli-
cation (e.g., in response to a user-entered URL or selected
link). The web page request can also be received by a
headless browser environment (e.g., headless browser envi-
ronment 210).

At 520, web page resources for the requested web page
are obtained. The web page resources can comprise HTML
and related resources (e.g., image files, CSS information,
JavaScript files, video content, and/or other resources ref-
erenced by the web page). The web page resources can be
obtained directly from web servers or content servers, from
a local cache, and/or from an intermediary system (e.g., a
headless browser environment).

At 530, a statistical model representing the web page is
obtained. The statistical model can be created from previ-
ously loaded instances of the web page (e.g., created to
reflect average statistics of the previously loaded instances,
including average size statistics and average structure sta-
tistics). The statistical model can represent expected prop-
erties for a typical page load. For example, a web page may
typically have only a small variation in component size and
structure, which can be reflected in its statistical model
having a small variation in average size and layout statistics
(e.g., the standard deviation may be relatively low). On the
other hand, a web page may typically (e.g., as determined
from a number of previous page loads) have a large variation
in component size and structure, which can be reflected in its
statistical model having a large variation in average size and
layout statistics (e.g., the standard deviation may be rela-
tively high).

At 540, the requested web page is compared with the
statistical model obtained at 530 to determine whether the
web page is consistent with the statistical model. The
comparison can include determining whether the web page
is within a range of known good values for various com-
ponents of the web page (e.g., size statistics and/or structure
statistics as obtained from the statistical model). If the web
page is consistent with the statistical model, the web page

US 9,479,519 Bl

11

can be loaded and displayed (e.g., provided to a web browser
application at a client device for display). Indications of a
successful match can also be output (e.g., saved to a log file).
However, if the web page is not consistent with the statistical
model, then an indication of a potential page load problem
can be output (e.g., saved to a local or remote log file, sent
to an administrator, provided to a user as an alert, etc.).

FIG. 6 is a flow chart of an example method 600 for
detecting potential problems, such as web page spoofing,
during web page loading. At 610, a request is made for a web
page from a second web site. The second web site can be
identified by a specific domain name, URL, and/or a specific
1P address.

At 620, a statistical model is identified that represents the
web page in relation to a first web site that is different from
the second web site. For example, the statistical model can
be created from previously loaded instances of the web page
from the first web site. The first web site can be identified by
a specific domain name, URL, and/or IP address that is
different from the first web site. In some implementations,
the statistical model is identified as a matching statistical
model among a collection of statistical models for various
web pages. Identifying the statistical model as a match can
include comparing size statistics and/or structure statistics
generated from the requested web page from the second web
site with the statistical model.

At 630, an indication that the web page from the second
web site matches the statistical model of the web page from
the first web site is output. In some implementations, the
indication is that the web page from the second web site may
be a spoofed web page. Outputting the indication can
comprise saving the indication to a local or remote log file,
sending an alert to an administrator, or alerting the user.

In some implementations, other criteria are used to deter-
mine that the web page requested from the second web site
(at 610) is a potentially spoofed web page. For example, the
IP address of the second web site can be analyzed to
determine its network location (e.g., network provider)
and/or geographical location (e.g., country). A network
location and/or geographical location that is not an expected
source of the web page can be an indication that the web
page is not from a legitimate source (e.g., that it is spoofed).
For example, a list of legitimate network providers, geo-
graphical locations, and/or IP addresses (e.g., network
address ranges) can be maintained in association with the
statistical model and used for comparison purposes.

FIG. 7 is a block diagram depicting an example environ-
ment 700 in which content consumption activity (e.g., web
browsing) is performed by a client device 760 in commu-
nication with an intermediary system 710. For example, the
intermediary system 710 can be a headless browser system
that performs web browsing operations independently, or in
combination with, the client device 760.

The activity shown in FIG. 7 will be discussed with
respect to a request for, processing of, and interaction with
a content page, such as a web page. [llustratively, the content
page may be any content page hosted or offered by a content
source, such as a web site. The content page may be defined,
at least partially, by a base resource such as an HTML file.
The base resource does not need to be a pre-existing file, but
may instead be a dynamically generated stream of markup
language, metadata, or other content. The base resource may
reference one or more embedded resources, such as images,
videos, script files, executable objects, and the like. For
example, if the base resource is an HTML file, it may include
tags referencing various resources including location iden-
tifiers where the resources may be obtained (e.g., local

10

15

20

25

30

35

40

45

50

55

60

65

12

identifiers and/or external identifiers such as addresses of
servers where the resources may be obtained).

As illustrated, the browser 770 of the user device 760 can
send a request for content (as indicated at 764) to the content
retrieval module 720 of the intermediary system 710. The
request for content can be, for example, a request for a web
page generated when the user selects a user-selectable
option directing the browser 770 to the web page URL. The
request for content may be a standardized request, such as an
HTML GET request that requests a resource at a particular
location. In some embodiments, the request for content may
be a request for layers (e.g., for processed layers). In some
embodiments, the request for content can be accompanied
by data representing capabilities of client device 760, for
example one or more of processing capabilities, network
connection parameters, and configuration of browser 770, to
name a few.

In some embodiments, when intermediary system 710
receives the request for a content page, the intermediary
system 710 can assess, for the content page, whether sending
the content for the page as processed layers (e.g., at one or
more levels of processing) to the client device 760 will
reduce a user-perceived page load time relative to at least
one alternative rendering technique. In some cases, the
intermediary system 710 can determine whether a layer
transfer rendering technique, in which processed layers are
sent, is preferable for a given page load based on a number
of factors, for example the speed, bandwidth, and type of
network connection of client device 760 as well as charac-
teristics of the content site. For example, intermediary
system 710 can determine or predict whether the layer
transfer rendering technique will reduce a page load time
and/or bandwidth consumption compared to fully rendering
the content page on the browser 770 (e.g., sending original
HTML and associated web resources and having the browser
770 perform all of the rendering pipeline operations) or fully
rendering the content page on the intermediary system 710
(e.g., performing all of the rendering pipeline operations and
sending a bitmap representation to the client device 760).

The content retrieval module 720 can retrieve the content
of the content page, for example HTML and associated
resources, from content sources (e.g., web servers or content
servers) and/or from local storage (e.g., cache). In some
implementations, the network connection between the con-
tent retrieval module 720 and the content sources may be
faster than the network connection between the client device
760 and the content sources, thereby reducing latency in
rendering the content page for the user. The content source
may be the origin content server, a CDN server, a proxy
server, or some other source.

The content processing module 740 (e.g., implementing
all or part of a rendering pipeline) can receive content (e.g.,
web page content) from the content retrieval module 720.
The content processing module 740 can construct a Docu-
ment Object Model (DOM) from of the received content, as
indicated at 742. For example, the DOM can be constructed
by converting HTML elements and any embedded resources
into DOM nodes based on a DOM definition or specifica-
tion. Creating the DOM can also involve parsing any avail-
able style data, such as style data obtained from a referenced
CSS file or style data included in the HTML file.

Based on the DOM, different levels of processed layers
can be generated, which can include higher level processed
layers 744, lower level processed layers 746 and any pro-
cessed layers in-between. While two levels of processed
layers are depicted (744 and 746), different implementations
can have more or fewer levels of processed layers. Different

US 9,479,519 Bl

13

layers of a content page can encompass different two-
dimensional areas of the content page (for example, cover
different ranges of coordinates without overlapping). In
some cases, one layer may partially or completely overlap
another layer (for example, a background layer may be
partially overlapped by any number of other layers, each of
which may partially or completely overlap other layers,
etc.). The content processing module 740 can also create a
bitmap representation of the content (e.g., the web page)
using the processed layers, as depicted at 748. Depending on
the specific configuration being used, the content processing
module 740 can create information for one or more of the
levels of processing (e.g., 742, 744, 746, and/or 748). For
example, the content processing module 740 may process
the content to create a DOM (as depicted at 742) and a
higher level processed layer (as depicted at 744) without any
additional processing (e.g., without proceeding to lower
level processed layers or bitmaps, as depicted at 746 and
748).

The intermediary system 710 supports sending content to
the client device 760 at different levels of processing. For
example, the content sending module 750 can receive raw
content (e.g., original HTML content and associated
resources) form the content retrieval module 720. The
content sending module 750 can receive DOM information
from the content processing module 740. The content send-
ing module 750 can receive different levels of processed
layers from the content processing module 740. The content
sending module 750 can receive bitmap images from the
content processing module 740. These different sources of
content are indicated by the dashed lines within the inter-
mediary system 710. Depending on the specific configura-
tion being used, the content sending module 750 may
receive content from one or more levels of processing (e.g.,
the content sending module 750 may only receive lower
level processed layers for sending to the client device 760).

The content sending module 750 can encode the received
content for sending to the client device 760. For example,
the content sending module 750 can encode layers using a
variety of layer encoding techniques and can examine the
content of an individual layer to determine which encoding
technique to use (e.g., to minimize bandwidth or page load
time, for compatibility with a particular client device, etc.).

When the client device 760 receives the content from the
content sending module 750 (as indicated at 766), the
browser 770 decodes the content, as indicated at 772.
Decoding the content can involve performing one or more
decoding techniques corresponding to the encoding tech-
niques used to encode the content.

The browser 770 can perform client content processing,
as depicted at 774. For example, the browser 770 can
perform processing operations similar to, or the same as,
those performed by the content processing module 740. The
type of processing performed by the browser 770 can
depend on the level of processing performed by the inter-
mediary system 710. For example, if the content processing
module 740 created a DOM and then a higher level pro-
cessed layer (e.g., a render layer tree) and sent the higher
level processed layer to the client device 760, then the
browser 770 could complete the processing by creating
lower level processed layers (e.g., a graphics layer tree and
a composited layer tree) and bitmaps for display, as depicted
at 780 (e.g., in cooperation with a GPU of the client device
760, not depicted).

In some embodiments, the browser 770 performs content
processing, as depicted at 774, to create decoded layers that
can be provided to a layer compositor (not depicted) for

5

10

15

20

25

30

35

40

45

50

55

60

65

14

generating instructions for display to display (as depicted at
780) a visual representation of the content page based on the
layers. For example, a layer tree can be constructed so that
the layers will be decoded and provided to the layer com-
positor in an order in which the layers should be rendered.
For example, the layer compositor can assemble the decoded
layers in the proper positioning and in the proper order (e.g.,
with a background layer behind other layers, foreground
layers covering background layers with overlapping coor-
dinates, and with an interactivity layer in front of the layers).
The layer compositor can use the assembled layers to
generate instructions to configure to display a visual repre-
sentation of the content page.

The browser 760 can also detect user interaction with
elements of the displayed content (e.g., user-selectable user-
interface elements such as buttons and menus, scrolling,
zooming, etc.) and send indications of user interaction to the
interaction processing module 730, as indicated at 762. The
browser 770 can also be configured to perform local ren-
dering updates in some embodiments. As discussed above, a
layer can be generated corresponding to a scrollable portion
of the content page. Accordingly, the browser 770 can use
the scrollable layer data to locally handle scrolling through
the layer by updating the portion of the scrollable layer
content that is displayed in the viewport, or boundary, of the
scrollable layer. The browser 770 can also detect changing
graphical content, for example in a GIF or video, and send
a request for updated content to the intermediary system 710
if needed. In some embodiments the browser 770 may have
received a URL corresponding to video content from the
intermediary system 710, and accordingly may be able to
handle the update to the portion of the content page includ-
ing the video without sending a request to the intermediary
system 710.

For any interactions that are not able to be handled locally
by the browser 770 using the received content, the browser
770 can send the indications of user interaction, as depicted
at 762, to the interaction processing module 730. The
interaction processing module 730 can determine whether
any updates to the visual representation of the content page
are necessitated by the user interaction with the elements of
the content. For example, the interaction processing module
730 can communicate with the content retrieval module 720
to obtain new or update content. The interaction processing
module 730 can also communicate with the content pro-
cessing module 740 to perform processing of content (e.g.,
an update to the DOM, an update to one or more processing
layers, etc.) for sending back to the client device 760 in
response to the interaction.

In some implementations, example environment 700 sup-
ports detection of potential problems with web pages (e.g.,
during web page loading, which can include web page
retrieval, rendering, and/or display). For example, the inter-
mediary system 710 and/or the client device 760 compare a
retrieved web page with a statistical model of the web page
(e.g., created from previous page loads of the web page) to
determine if the retrieved web page matches (e.g., is con-
sistent with) the statistical model. The retrieved web page
can be compared with the statistical model using a variety of
statistics, including size statistics and structure statistics.

FIG. 8 depicts a generalized example of a suitable com-
puting environment 800 in which the described innovations
may be implemented. The computing environment 800 is
not intended to suggest any limitation as to scope of use or
functionality, as the innovations may be implemented in
diverse general-purpose or special-purpose computing sys-
tems. For example, the computing environment 800 can be

US 9,479,519 Bl

15

any of a variety of computing devices (e.g., desktop com-
puter, laptop computer, server computer, tablet computer,
etc.)

With reference to FIG. 8, the computing environment 800
includes one or more processing units 810, 815 and memory
820, 825. In FIG. 8, this basic configuration 830 is included
within a dashed line. The processing units 810, 815 execute
computer-executable instructions. A processing unit can be
a general-purpose central processing unit (CPU), processor
in an application-specific integrated circuit (ASIC) or any
other type of processor. In a multi-processing system, mul-
tiple processing units execute computer-executable instruc-
tions to increase processing power. For example, FIG. 8
shows a central processing unit 810 as well as a graphics
processing unit or co-processing unit 815. The tangible
memory 820, 825 may be volatile memory (e.g., registers,
cache, RAM), non-volatile memory (e.g., ROM, EEPROM,
flash memory, etc.), or some combination of the two, acces-
sible by the processing unit(s). The memory 820, 825 stores
software 880 implementing one or more innovations
described herein, in the form of computer-executable
instructions suitable for execution by the processing unit(s).

A computing system may have additional features. For
example, the computing environment 800 includes storage
840, one or more input devices 850, one or more output
devices 860, and one or more communication connections
870. An interconnection mechanism (not shown) such as a
bus, controller, or network interconnects the components of
the computing environment 800. Typically, operating system
software (not shown) provides an operating environment for
other software executing in the computing environment 800,
and coordinates activities of the components of the comput-
ing environment 800.

The tangible storage 840 may be removable or non-
removable, and includes magnetic disks, magnetic tapes or
cassettes, CD-ROMs, DVDs, or any other medium which
can be used to store information in a non-transitory way and
which can be accessed within the computing environment
800. The storage 840 stores instructions for the software 880
implementing one or more innovations described herein.

The input device(s) 850 may be a touch input device such
as a touch display or touchpad, a keyboard, a mouse, a pen,
a voice input device, a scanning device, or another device
that provides input to the computing environment 800. The
output device(s) 860 may be a display, printer, speaker,
CD-writer, or another device that provides output from the
computing environment 800.

The communication connection(s) 870 enable communi-
cation over a communication medium to another computing
entity. The communication medium conveys information
such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, communication media can use an electrical, opti-
cal, RF, or other carrier.

While illustrative embodiments have been disclosed and
discussed, one skilled in the relevant art will appreciate that
additional or alternative embodiments may be implemented
within the spirit and scope of the present invention. For
example, the techniques described herein may be utilized,
without departing from the scope of the present invention, to
allow remote processing management in any number of
other software applications and processes, including, but not
limited to, image or video editing software, database soft-
ware, office productivity software, 3d design software, audio

10

15

20

25

30

35

40

45

50

55

60

65

16

and sound processing applications, etc. Additionally,
although many embodiments have been indicated as illus-
trative, one skilled in the relevant art will appreciate that the
illustrative embodiments do not need to be combined or
implemented together. As such, some illustrative embodi-
ments do not need to be utilized or implemented in accor-
dance with scope of variations to the present disclosure.

Although the operations of some of the disclosed methods
are described in a particular, sequential order for convenient
presentation, it should be understood that this manner of
description encompasses rearrangement, unless a particular
ordering is required by specific language set forth below. For
example, operations described sequentially may in some
cases be rearranged or performed concurrently. Moreover,
for the sake of simplicity, the attached figures may not show
the various ways in which the disclosed methods can be used
in conjunction with other methods.

Any of the disclosed methods can be implemented as
computer-executable instructions stored on one or more
computer-readable storage media (e.g., one or more optical
media discs, volatile memory components (such as DRAM
or SRAM), or non-volatile memory components (such as
flash memory or hard drives)) and executed on a computer
(e.g., any commercially available computer, including smart
phones or other mobile devices that include computing
hardware). The term computer-readable storage media does
not include signals and carrier waves, and does not include
communication connections. Any of the computer-execut-
able instructions for implementing the disclosed techniques
as well as any data created and used during implementation
of the disclosed embodiments can be stored on one or more
computer-readable storage media. The computer-executable
instructions can be part of, for example, a dedicated software
application or a software application that is accessed or
downloaded via a web browser or other software application
(such as a remote computing application). Such software can
be executed, for example, on a single local computer (e.g.,
any suitable commercially available computer) or in a
network environment (e.g., via the Internet, a wide-area
network, a local-area network, a client-server network (such
as a cloud computing network), or other such network) using
one or more network computers.

For clarity, only certain selected aspects of the software-
based implementations are described. Other details that are
well known in the art are omitted. For example, it should be
understood that the disclosed technology is not limited to
any specific computer language or program. For instance,
the disclosed technology can be implemented by software
written in C++, Java, Perl, JavaScript, Adobe Flash, or any
other suitable programming language. Likewise, the dis-
closed technology is not limited to any particular computer
or type of hardware. Certain details of suitable computers
and hardware are well known and need not be set forth in
detail in this disclosure.

It should also be well understood that any functionality
described herein can be performed, at least in part, by one or
more hardware logic components, instead of software. For
example, and without limitation, illustrative types of hard-
ware logic components that can be used include Field-
programmable Gate Arrays (FPGAs), Program-specific Inte-
grated Circuits (ASICs), Program-specific Standard
Products (ASSPs), System-on-a-chip systems (SOCs), Com-
plex Programmable Logic Devices (CPLDs), etc.

Furthermore, any of the software-based embodiments
(comprising, for example, computer-executable instructions
for causing a computer to perform any of the disclosed
methods) can be uploaded, downloaded, or remotely

US 9,479,519 Bl

17

accessed through a suitable communication means. Such
suitable communication means include, for example, the
Internet, the World Wide Web, an intranet, software appli-
cations, cable (including fiber optic cable), magnetic com-
munications, electromagnetic communications (including
RF, microwave, and infrared communications), electronic
communications, or other such communication means.

The disclosed methods, apparatus, and systems should not
be construed as limiting in any way. Instead, the present
disclosure is directed toward all novel and nonobvious
features and aspects of the various disclosed embodiments,
alone and in various combinations and subcombinations
with one another. The disclosed methods, apparatus, and
systems are not limited to any specific aspect or feature or
combination thereof, nor do the disclosed embodiments
require that any one or more specific advantages be present
or problems be solved.

In view of the many possible embodiments to which the
principles of the disclosed invention may be applied, it
should be recognized that the illustrated embodiments are
only preferred examples of the invention and should not be
taken as limiting the scope of the invention. Rather, the
scope of the invention is defined by the following claims.
Therefore, what is claimed as the invention is all that comes
within the scope of these claims.

What is claimed is:

1. A method, implemented by a client computing device,
for detecting problems during web page loading, the method
comprising:

requesting a web page;

in response to the request, receiving web page resources

for the web page, wherein the web page resources
comprise HyperText Markup Language (HTML) and
related resources;
loading the web page;
obtaining a statistical model created from previous web
page loads of the web page, wherein the statistical
model represents a known good state of the web page,
and wherein the statistical model for the web page
comprises a fingerprint representing structure informa-
tion of the web page generated from a plurality of
successful previous page loads for the web page, the
structure information comprising at least one of divi-
sion (div) elements or document object model (DOM)
elements;
generating statistics for the loaded web page; and
comparing the generated statistics for the loaded web
page with the obtained statistical model for the web
page including comparing a fingerprint representing
structure information of the loaded web page to the
fingerprint from the statistical model; and

determining whether a page load problem has occurred
based on results of the comparison.

2. The method of claim 1 further comprising:

when the page load problem has occurred, outputting an

indication of the page load problem.

3. The method of claim 1 wherein determining whether a
page load problem has occurred comprises:

obtaining a standard deviation value associated with the

statistical model; and

determining that a page load problem has occurred when

a difference between the generated statistics for the
loaded web page and the obtained statistical model for
the web page exceeds the standard deviation value.

4. The method of claim 1 wherein the statistical model for
the web page comprises average byte counts for a plurality

10

15

20

30

35

40

45

50

60

65

18

of web page resources generated from a plurality of suc-
cessful previous page loads for the web page.

5. The method of claim 4 wherein the average byte counts
comprise:

number of bytes of HTML; and

number of bytes of JavaScript.

6. The method of claim 1 wherein the structure informa-
tion comprises div elements, wherein the fingerprint for the
loaded web page and the fingerprint from the statistical
model comprise a count of div elements, and wherein the
comparing performs a comparison of the counts of div
elements.

7. The method of claim 6 wherein count of div elements
is a count of unique div elements.

8. The method of claim 1 wherein the structure informa-
tion comprises div elements, wherein the fingerprint for the
loaded web page and the fingerprint from the statistical
model comprise identification of div elements with specific
attribute identifiers, and wherein the comparing performs a
comparison between div elements with the specific attribute
identifiers.

9. A computing device comprising:

one or more processing units; and

one or more network interfaces;

the computing device configured to perform operations

for detecting problems during web page loading, the
operations comprising:
receiving a request for a web page;
in response to the request, obtaining web page
resources for the web page, wherein the web page
resources comprise HyperText Markup Language
(HTML) and related resources;
obtaining a statistical model for the web page, wherein
the statistical model represents previously loaded
instances of the web page, and wherein the statistical
model for the web page comprises a fingerprint
representing structure information of the web page
generated from a plurality of successful previous
page loads for the web page, the structure informa-
tion comprising at least one of division (div) ele-
ments or document object model (DOM) elements;
and
comparing the web page with the statistical model to
determine whether the web page is consistent with
the statistical model, comprising:
creating a fingerprint representing structure informa-
tion of the requested web page; and
comparing the fingerprint representing the structure
of the requested web page to the fingerprint from
the statistical model.

10. The computing device of claim 9, the operations
further comprising

outputting a notification when a difference between the

web page and the statistical model is over a threshold
value.

11. The computing device of claim 9, the operations
further comprising

outputting a notification indicating a possible problem

with the web page when a difference between the web
page and the statistical model is greater than one
standard deviation.

12. The computing device of claim 9, wherein comparing
the web page with the statistical model comprises:

collecting statistics representing a number of bytes for one

or more components of the web page; and
comparing the collected statistics with the statistical
model.

US 9,479,519 Bl

19

13. The computing device of claim 9, wherein comparing
the web page with the statistical model comprises:

collecting statistics representing a number of bytes for a

plurality of components of the web page, comprising:

a number of bytes representing HTML of the web page;

a number of bytes representing JavaScript of the web
page;

a number of bytes representing Cascading Style Sheet
(CSS) information of the web page; and

a number of bytes representing one or more images of
the web page; and

comparing the collected statistics with corresponding

average statistics for the plurality of components from
the statistical model.

14. The computing device of claim 9, wherein comparing
the web page with the statistical model to determine whether
the web page is consistent with the statistical model com-
prises:

creating the fingerprint representing structure information

of the requested web page, the structure elements
comprising division (div) elements.

15. The computing device of claim 9, wherein comparing
the web page with the statistical model to determine whether
the web page is consistent with the statistical model com-
prises:

creating a document object model (DOM) of the

requested web page;

creating the fingerprint of the requested web page based,

at least in part, on one or more DOM elements.

16. A computer-readable storage medium storing com-
puter-executable instructions for causing a computing
device to perform operations for detecting problems during
web page loading, the operations comprising:

requesting a web page from a second web site;

in response to the request, receiving web page resources

for the web page, wherein the web page resources
comprise HyperText Markup Language (HTML) and
related resources;

identifying a statistical model for the web page, wherein

the statistical model represents previously loaded
instances of the web page from a first web site different
from the second web site, and wherein the statistical
model is identified based on a match between the web
page from the second web site and the statistical model,

10

20

30

35

40

20

and wherein the statistical model for the web page
comprises a fingerprint representing structure informa-
tion of the web page generated from the previously
loaded instances of the web page from the first web site,
the structure information comprising at least one of
division (div) elements or document object model
(DOM) elements, wherein identifying the statistical
model comprises:
comparing structure information for the web page from
the second web site with the fingerprint from the
statistical model; and
outputting an indication that the web page from the
second web site matches the statistical model of the
web page from the first web site.

17. The computer-readable storage medium of claim of
claim 16, the operations further comprising:

generating statistics for the web page from the second

web site; and

determining that the statistics for the web page from the

second web site match the statistical model, compris-

ing:

determining that one or more of the generated statistics
are substantially the same as one or more corre-
sponding statistics of the statistical model.

18. The computer-readable storage medium of claim of
claim 17 wherein the one or more generated statistics
comprise one or more of:

a number of bytes representing HTML of the web page

from the second web site; and

a number of bytes representing JavaScript of the web page

from the second web site.

19. The computer-readable storage medium of claim of
claim 16 wherein the first web site and the second web site
have at least one of:

different domain names; and

different Internet Protocol (IP) addresses.

20. The computer-readable storage medium of claim of
claim 16 wherein outputting an indication that the web page
from the second web site matches the statistical model of the
web page from the first web site comprises at least one of:

alerting a user that the web page from the second web site

may be spoofed; and

saving the indication at a server environment.

#* #* #* #* #*

